
A Belgian View on Lattice Rules

Ronald Cools1 and Dirk Nuyens2

1 Dept. of Computer Science, K.U.Leuven, Celestijnenlaan 200A, B-3001 Heverlee,
Belgium
Ronald.Cools@cs.kuleuven.be

2 Dept. of Computer Science, K.U.Leuven, Celestijnenlaan 200A, B-3001 Heverlee,
Belgium
Dirk.Nuyens@cs.kuleuven.be

1 Introduction

The problem we consider is the approximation of multivariate integrals over
the s-dimensional unit cube

I[f ] :=
∫ 1

0

· · ·
∫ 1

0

f(x1, . . . , xs) dx1 · · · dxs =
∫

[0,1)s

f(x) dx.

We are interested in approximations of the form

Q[f ] :=
n∑

j=1

wjf(y(j)) (1)

with weights wj ∈ R and points y(j) ∈ [0, 1)s.
Many people call this a quadrature problem, although strictly speaking the

word “quadrature” refers to the 1-dimensional case, i.e., measuring an area.
By only using this key word in a search, one misses a whole world of relevant
literature. The more appropriate word is “cubature”. In written English, it
appears already in the 17th century to refer to measuring a volume.3 Because
one speaks about an s-dimensional cube, it is natural to use the same word in
connection with measuring s-dimensional volumes, i.e., integrals. So, if s = 1
then Q is called a quadrature formula and if s ≥ 2 then Q is called a cubature
formula.

We are particularly interested in cubature formulas where the points y(j)

and weights wj are chosen independent of the integrand f . It is usually difficult
and time consuming to construct such cubature formulas, but the result is
usually hard coded in programs or tables.

3 An equivalent exists in other languages, e.g., in German “Kubatur” and in Dutch
“kubatuur”.
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In the taxonomy of cubature formulas one can distinguish two major classes:
polynomial based methods (e.g., methods exact for algebraic or trigonometric
polynomials) and number theoretic methods (e.g., quasi-Monte Carlo methods
and even Monte Carlo methods based on pseudo random number generators).
As in zoology, some species are difficult to classify. Lattice rules are a family
of cubature formulas that are studied as members of both classes, depending
on the background of the researcher. They are in the focus of this text.

Definition 1. An s-dimensional lattice rule is a cubature formula which can
be expressed in the form

Q[f ] =
1

d1d2 . . . dt

d1∑
j1=1

d2∑
j2=1

. . .

dt∑
jt=1

f

({
j1z1

d1
+
j2z2

d2
+ . . .+

jtzt

dt

})
,

where t and di ∈ N \ {0} and zi ∈ Zs for all i.

The notation {·} denotes to take the fractional part componentwise.
An alternative definition is given below. This already shows that lattice

rules can be approached in different ways.

Definition 2. A multiple integration lattice Λ is a subset of Rs which is
discrete and closed under addition and subtraction and which contains Zs as a
subset. A lattice rule is a cubature formula where the n points are the points of
a multiple integration lattice Λ that lie in [0, 1)s and the weights are all equal
to 1/n.

We must emphasize that a lattice rule has different representations of the
form given in Definition 1. The minimal number of sums (i.e., the minimal
number of generating vectors zi) required is called the rank of the lattice rule.
Even if the number of generators is fixed, the rules can still be represented
using different generating vectors. Many papers only consider lattice rules of
rank 1. A rank-1 lattice rule is generated by one vector z and has the form

Q[f ] =
1
n

n∑
j=1

f

({
jz
n

})
.

The view on lattice rules presented in this text is strongly biased. It reflects
how the first author got into contact with lattice rules, and how he started
looking at them from the view on multivariate integration he had at that time.
(For a different view on lattice rules, which also includes other kinds of quasi-
Monte Carlo point sets, we refer to [LL02].) In Section 2 an overview of quality
and construction criteria for lattice rules is given, biased towards what is less
known in the qMC-world, i.e., the target audience of this volume. In Section 3
we will briefly describe recent approaches for constructing lattice rules, making
it clear that the choice of quality criterion determines the required construction
effort. In Section 4 we will point to techniques to make lattice rules work in
practice and in Section 5 we will illustrate that lattice rules are used from
2-dimensions to high dimensions. Final remarks are given in Section 6.



A Belgian View on Lattice Rules 5

2 Quality Criteria

2.1 Rules Exact for Polynomials

There are many quality criteria to specify and classify cubature formulas in
general, and lattice rules in particular. Trigonometric polynomials play an
important role in the world of lattice rules. Algebraic polynomials play a role
in connection with more “classical” cubature formulas. In this section we will
point to some similarities.

Let h = (h1, h2, . . . , hs) ∈ Zs and |h| :=
∑s

j=1 |hj |. An algebraic polynomial
is a finite sum of the form

p(x) =
∑
h∈Zs

ahxh =
∑
h∈Zs

ah

s∏
j=1

x
hj

j , with hj ≥ 0.

A trigonometric polynomial is a finite sum of the form

t(x) =
∑
h∈Zs

ahe
2πih·x =

∑
h∈Zs

ah

s∏
j=1

e2πixjhj .

The degree of a polynomial is defined as maxah �=0 |h|. The space of all algebraic
polynomials in s variables of degree at most d is denoted by Ps

d. The space of
all trigonometric polynomials in s variables of degree at most d is denoted by
Ts

d. We will use the symbol Vs
d to refer to one of the vector spaces Ps

d or Ts
d.

The dimensions of the vector spaces of polynomials are

dim Ps
d =
(
s+ d
d

)
and dim Ts

d =
s∑

j=0

(
s
j

)(
d
j

)
2j .

The right hand sides are polynomials in d of degree s.
A very old quality criterion for cubature formulas comes from demanding

that the formula gives the exact value of the integral for polynomials.

Definition 3. A cubature formula Q has algebraic (trigonometric) degree d if
it is exact for all polynomials of algebraic (trigonometric) degree at most d.

Once this criterion is put forward, it is natural to ask how many points are
needed in a cubature formula to obtain a specified degree of precision. This
is obviously related to the dimension of the space for which the formula
reproduces the exact value of the integral.

Theorem 1. If a cubature formula is exact for all polynomials of Vs
2k, then

the number of points n ≥ dim Vs
k.

A proof of this result for algebraic degree is given in [Rad48] for s = 2 and
in [Str60] for general s. For trigonometric degree it is presented in [Mys87].
So, the required number of points increases exponentially with the dimension.
Furthermore a “large” part of the weights in a cubature formula have to be
positive.
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Theorem 2. If a cubature formula is exact for all polynomials of Vs
d and

has only real points and weights, then it has at least dim Vs
k positive weights,

k = �d
2�.

This result is proven in [Mys81] for algebraic degree and [Coo97] for trigono-
metric degree. The combination of the two previous theorems implies that
formulas attaining the lower bound of Theorem 1 have only positive weights.
For trigonometric degree, we even know more [BC93].

Corollary 1. If a cubature formula of trigonometric degree 2k has n = dim Ts
k

points, then all weights are equal.

One cannot expect that the lower bound of Theorem 1 can be attained for
odd degrees 2k + 1, since in that case it is equal to the bound for degree 2k.
For algebraic degree, there exists an improved lower bound for odd degrees
that takes into account information on the symmetry of the integration region.
The first such result was derived for centrally symmetric regions such as a cube.
For surveys of achievements in this particular area we refer to [Coo97, CMS01].
A similar result holds for the trigonometric degree case. Let Gk be the span of
trigonometric monomials of degree ≤ k with the same parity as k.

Theorem 3. The number of points n of a cubature formula for the integral
over [0, 1)s which is exact for all trigonometric polynomials of degree at most
d = 2k + 1 satisfies

n ≥ 2 dimGk.

This result is mentioned in [Nos85] and a complete proof appears in [Mys87].
Structures do not only play a role in the derivation of lower bounds; their

role in constructing cubature formulas is even more important. Imposing
structure on the points and weights is used since the beginning of history to
reduce the complexity of the construction problem for cubature formulas. The
basic structure for lattice rules is “shift symmetry”. In the trigonometric case
this structure plays the same role as “central symmetry” in the algebraic case.

Definition 4. A cubature formula is called shift symmetric if it is invariant
with respect to the group of transformations{

x �→ x,x �→
{
x +
(

1
2
, . . . ,

1
2

)}}
.

Hence, the multiple integration lattice Λ of a shift symmetric cubature formula
satisfies {

x +
(

1
2
, . . . ,

1
2

)
| x ∈ Λ

}
= Λ.

This structure was exploited to derive the following result [BC93].

Theorem 4. If a shift symmetric cubature formula of degree 2k + 1 has n =
2 dimGk points, then all weights are equal.
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In the algebraic case it is proven that formulas attaining the lower bound
for odd degrees for centrally symmetric regions are also centrally symmetric.
For the trigonometric case it was conjectured in [Coo97].

The results of Corollary 1 and Theorem 4 motivate us to restrict searches for
cubature formulas of trigonometric degree to equal weight cubature formulas.
Hence the general form (1) simplifies to

Q[f ] =
1
n

n∑
j=1

f(y(j)). (2)

Formulas for which the lower bounds in Theorems 1 and 3 are sharp,
are only known for degrees 1, 2 and 3 in all dimensions, for all degrees in 2
dimensions, and for degree 5 in 3 dimensions. We refer to [Coo97, Lyn03] for a
detailed survey. Almost all known formulas of trigonometric degree that attain
these lower bounds are (shifted) lattice rules. The only exceptions are derived
in [CS96].

Theorem 5. The following points(
Cp +

j

2(k + 1)
, Cp +

j + 2p
2(k + 1)

)
for j = 0, . . . , 2k + 1,

p = 0, . . . , k,

with C0 = 0 and C1, . . . , Ck arbitrary, are the points of a cubature formula for
the integral over [0, 1)2 of trigonometric degree 2k + 1.

We are not aware of successful efforts to construct cubature formulas of
trigonometric degree that are not (shifted) lattice rules. In Section 3 we will
mention recent construction methods for lattice rules with the trigonometric
degree criterion, not necessarily attaining the known lower bounds.

Most of the results summarized above were obtained using reproducing
kernels, see [Aro50]. A reproducing kernel K is in general a function of two
s-dimensional variables with the property that an evaluation of a function
f can be written as the inner product of f with K. If we work in a finite
dimensional space of polynomials, then a reproducing kernel can be written
using orthogonal polynomials. The trigonometric case is easier to work with
than the algebraic case because orthonormal polynomials are readily available.
Indeed, the trigonometric monomials form an orthonormal sequence. A further
simplifying aspect of the trigonometric case is that the reproducing kernel
can be written as a function of one s-dimensional variable. For s = 2 and Ts

d

it has a simple form which was exploited in [CS96] to obtain formulas with
the lowest possible number of points, including lattice rules and others (see
Theorem 5).

2.2 On Route to Other Quality Criteria

So far, we focused on integrating polynomials. What do we know if we apply
a cubature formula to a function that is not a polynomial? To answer this
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question, let us assume the integrand function f can be expanded into an
absolutely convergent multiple Fourier series:

f(x) =
∑
h∈Zs

f̂(h) e2πih·x with f̂(h) :=
∫

[0,1)s

f(x) e−2πih·x dx.

Then the approximation error of an equal weight cubature formula (2) is
given by

Q[f ] − I[f ] =
1
n

n∑
j=1

⎛⎝ ∑
h∈Zs\{0}

f̂(h) e2πih·y(j)

⎞⎠
=
∑

h∈Zs\{0}

⎛⎝f̂(h)
1
n

n∑
j=1

e2πih·y(j)

⎞⎠.
Observe that

1
n

n∑
j=1

e2πih·y(j)
=

{
1 if h · y(j) ∈ Z,

0 if h · y(j) �∈ Z.

So, if our equal weight cubature formula is a lattice rule, many terms in the
expression for the error vanish. This brings us to a very important tool to
investigate the error of a lattice rule and a well known theorem by Sloan and
Kachoyan [SK87].

Definition 5. The dual of the multiple integration lattice Λ is

Λ⊥ := {h ∈ Zs : h · x ∈ Z ∀x ∈ Λ}.

Theorem 6. Let Λ be a multiple integration lattice. Then the corresponding
lattice rule Q has an error

Q[f ] − I[f ] =
∑

h∈Λ⊥\{0}
f̂(h).

Remember that our analysis in this section assumes that the integrand can
be expanded in an absolutely convergent multiple Fourier series. So, lattice
rules look interesting for periodic functions. Not surprisingly, the trigonometric
degree can be defined in terms of the dual lattice.

Definition 6. The trigonometric degree of a lattice rule Q is

d(Q) := min
h∈Λ⊥\{0}

⎛⎝ s∑
j=1

|hj |
⎞⎠− 1.
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For many years this criterion was only used in Russia for construction. Some
references are [Mys85, Mys90, Rez90, Nos85, Nos88, Tem91, Sem96, Sem97,
Osi04, OP04].

Another popular criterion for lattice rules that can also be defined in terms
of the dual lattice is the Zaremba index or figure of merit.

Definition 7. The Zaremba index or figure of merit is

ρ(Q) := min
h∈Λ⊥\{0}

(
h1h2 · · ·hs

)
with h := max(1, |h|).

The Zaremba index was used in a computer search for good lattice rules in
three and four dimensions by Maisonneuve [Mai72], and also in, e.g., [BP85].
The now classical survey [Lyn89] already presented both the Zaremba index
and the trigonometric degree (there it is called “overall degree”) in the form
of the above definitions.

We will now sketch the origin of the Zaremba index. For c > 0 and fixed
α > 1, let Eα

s (c) be the class of functions f whose Fourier coefficients satisfy

|f̂(h)| ≤ c

(h1h2 · · ·hs)α
.

This is essentially a class of functions of a certain smoothness, given by α. The
worst possible function in class Eα

s (1) is

fα(x) :=
∑
h∈Zs

1
(h1h2 · · ·hs)α

e2πih·x.

Now define Pα(Q) as the error of the lattice rule Q for the function fα:

Pα(Q) :=
∑

h∈Λ⊥\{0}

1
(h1h2 · · ·hs)α

. (3)

When α is an even integer Pα(Q) is easy to compute because in that case fα
can be written as a product of Bernoulli polynomials. It was introduced by
Korobov [Kor59] who showed the existence of lattice rules for which Pα(Q) is
O(n−α+ε), ε > 0, or O(n−α(log(n))αs) in [Kor60].

It follows easily that the larger ρ(Q) is, the smaller we expect Pα(Q) to
be; the h which achieve the minimum in the definition of ρ(Q) make up the
largest value in the sum for Pα(Q). A lower bound on Pα(Q) can easily be
derived from the definitions as

2
ρ(Q)α

≤ Pα(Q)

but the real use of ρ(Q) is in deriving upper bounds, see, e.g., [Nie78, Nie92]
for an overview.
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Another related criterion is given by

R(Q) :=
∑

h∈Λ⊥\{0}
−n

2 <hj≤n
2

1
(h1h2 · · ·hs)

.

Here, Fourier coefficients which are already at a certain distance from the
origin are not considered anymore. This has the benefit that no smoothness
parameter α has to be chosen. In other words: R(Q) is a modified version of
Pα, chosen in such a way that α can be set to one. A similar lower bound as
for Pα(Q) is given by

1
ρ(Q)

≤ R(Q).

Recent searches based on R(Q) were done by Joe [Joe04] and Sinescu and Joe
[JS07]. These searches are in fact searches for the “star discrepancy” by using
a nice relationship in terms of R(Q). (Loosely speaking, a point set has low
discrepancy if the points are fairly well uniformly distributed in relation to the
number of points used, see, e.g., [Nie78, Nie92].) For large n it can be inferred
that large values of ρ(Q) will give small values of both R(Q) and Pα(Q).

In a Korobov space with smoothness α the value of Pα(Q) is the square of
the worst-case error. The worst-case error of a cubature rule Q in a space F
is given by

e(Q,F) = sup
f∈F

‖f‖F≤1

|I(f) −Q(f)|.

Such a Korobov space is a reproducing kernel Hilbert space (see [Aro50]). As
was already mentioned, a reproducing kernel Hilbert space is a function space
for which the evaluation of a function can be written as the inner product with
the reproducing kernel K. This reproducing kernel is in general a function
of two variables, but when the function space is periodic the kernel can in
fact be written as a function in one variable. Such a kernel is then called
shift-invariant. For a shift-invariant kernel K and a rank-1 lattice the squared
worst-case error is given by

e2(Q,K) = −
∫

[0,1)s

K(x,0) dx +
1
n

n∑
j=1

K

({
jz
n

}
,0
)
,

see, e.g., [Hic98a]. So if one knows the reproducing kernel, one can obtain an
explicit formula for the worst-case error in the space under consideration.

A very important and recent ingredient in these reproducing kernel Hilbert
spaces are weights which are used to denote the importance of certain sets of
variables. (Note that these weights are different from the ones in the cubature
formula (1).) The most simple and useful form of the kernel is the kernel for a
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shift-invariant and tensor-product weighted reproducing kernel Hilbert space.
In this case the kernel can be written as

K(x,y) =
s∏

k=1

(1 + γk ω({xk − yk})).

The weights γk ≥ 0 are used to denote the importance of the different dimen-
sions. For a rank-1 rule the typical form for the squared worst-case error in
such a weighted space is then

e2s(z) = −1 +
1
n

n∑
j=1

s∏
k=1

(
1 + γk ω

({
jzk
n

}))
, (4)

where we assumed that
∫ 1

0
ω(x) dx = 0.

The use of reproducing kernel Hilbert spaces has created a very elegant
theory in which all kinds of discrepancies can be defined in terms of the worst-
case error in a certain space (see, e.g., [Hic98a, Hic98b]). Moreover, it enables
the study of the error in non-periodic spaces, see, e.g., [SKJ02a, SKJ02b].

3 Recent Constructions

In Section 2 we presented lower bounds for the number of points that is
required in a cubature formula to attain a specified trigonometric degree. The
theorems are not constructive and—as mentioned in Section 2—formulas that
attain the known bounds are only known for small s or d. The construction
of lattice rules is done by searches. The parameters in such a search are the
number of points, the number of generating vectors and the components of
these vectors. Obviously the complete search space is huge. Furthermore, the
cost to verify that a lattice rule has trigonometric degree d is proportional to
ds. Consequently only “moderate” dimensions are feasible for this criterion for
this reason only.

Practical constructions of lattice rules start with restricting the search
space. A popular restriction is to consider only rank-1 lattice rules with one
generating vector, hence only s components have to be determined. Actually,
most authors only consider so-called rank-1 simple rules, where the first
component of the generating vector is equal to 1. Then only s− 1 components
have to be determined.

The search space can be even further reduced by considering only generator
vectors of the form

z(�) = (1, �, �2 mod n, . . . , �s−1 mod n), 1 < � < n. (5)

This is the form of so-called Korobov rules [Kor60].
In the remainder of this section we will sketch two recent successful types

of searches. They use a different quality criterion and have their own way to
restrict the search space.
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3.1 Rules of Exact Trigonometric Degree

Many searches for lattice rules use the generator matrix of the dual lattice.
We will first properly introduce this concept. Recent searches impose some
structure on this matrix.

Any s-dimensional lattice Λ can be specified in terms of s linearly indepen-
dent vectors {a1,a2, . . . ,as}. These vectors are known as generators of Λ. (In
addition to the t vectors in Definition 1, one can always take s− t unit vectors.)
Associated with the generators is an s× s generator matrix A whose rows are
a1,a2, . . . ,as. All lattice points x are of the form x =

∑s
i=1 λiai = λA for

some λ ∈ Zs.
The dual lattice Λ⊥ has generator matrix B = (A−1)T . Some authors

use this as the definition of a dual lattice, instead of Definition 5. They are
equivalent. It can be shown that the number of points n = |detA|−1 = |detB|.

Recent searches in low dimensions are based on the following argument
by [CL01]: “It is reasonable to believe that the lattice Λ of an optimal lattice
rule will have Λ⊥ with many elements on the boundary of S(Os, d+ 1)”. Here
S(Os, d + 1) denotes a magnification of the unit octahedron Os by a factor
d+ 1. Their searches only consider lattice rules whose dual has s generators
lying on the boundary of S(Os, d + 1). The corresponding lattice rules are
called K-optimal rules.

The cost for searching this space mainly depends on the number of gen-
erator matrices that must be considered; this is O(ds2−s). Most of these can
be eliminated quickly but for a minute proportion one has to verify their
trigonometric degree, at a cost over ds−1. This leads to a complexity bounded
above by ds2−1. This is a pessimistic bound, but it indicates the fundamental
problem of this approach. In [CL01] it was used for 3 and 4 dimensions. In
[LS06] the results of a ‘Seti@home’-type of search is described for 5 dimensions,
limited to d ≤ 11.

One can impose structure on the generator matrix of the dual lattice to
reduce the number of free parameters in the search. In [LS04, CG03] the search
was restricted to (skew-)circulant generator matrices. This reduces the cost to
O(d2s−2) and was very successful in 4–6 dimensions. This approach also lead
to closed expressions for lattice rules of arbitrary degrees. A more detailed
summary of this approach is presented in [CN06]

We will conclude this part with a digression: linking the search for lattice
rules to the field known as “geometry of numbers”. To compare the number of
points of different lattice rules of the same degree we require a proper scaling.
The packing factor provides this.

Definition 8. The packing factor is

ρ̂(n) :=
(d+ 1)s

s!n
.

The packing factor is a measure of the efficiency of a rule and provides a
convenient way for making pictures because 0 ≤ ρ̂(n) ≤ 1.



A Belgian View on Lattice Rules 13

Actually, ρ̂(n) is bounded above by what people working in the area of
“geometry of numbers” call the density of the densest lattice packing of the
crosspolytope (octahedron) θ(Os) [GL87]. This provides a better lower bound
for lattice rules for trigonometric degree than those of Theorems 1 and 3:

n ≥ (d+ 1)s

s!θ(Os)
.

The problem is however that θ(Os) is only known for s = 1, 2 and 3: θ(O1) =
θ(O2) = 1, θ(O3) = 18

19 . This last result is due to Minkowski [Min67] and was
already used in [Fro77] to construct lattice rules.

Lattice rules provide constructive lower bounds for θ(Os). From a lattice
rule with n points having degree d follows

θ(Os) ≥ (d+ 1)s

s!n
.

The currently best known bounds for θ(Os), s = 4, 5 and 6 all follow from
known lattice rules [OP04, Coo06].

3.2 Rules Minimizing a Worst-Case Error

The introduction of weights in the function space, e.g., as in (4), makes it
practically impossible to hard code the cubature rules in tables since there are
an infinite number of weighted function spaces to choose from. The weights
give the flexibility to tune the function space, but at a price. Luckily, for
shift-invariant spaces we are able to construct lattice rules just in time by a
fast algorithm.

If one wants to search lattice rules which minimize Pα(Q), R(Q) or any
other weighted worst-case error for a given function space, then again the
search space has to be limited in one way or another. In this section the
focus will be on rank-1 rules. A traditional approach was to consider Korobov
rules (5), but more recently, the component-by-component construction [SR02]
has opened many more possibilities. Since the publication of [SR02] a lot of
results concerning component-by-component construction were obtained, both
on the existence and on the construction side, see, e.g., [SKJ02a, SKJ02b,
DK04a, Kuo03, CKN06].

Instead of trying to find an optimal generating vector of a predefined
form, the components of the generating vector are now searched, and fixed,
component by component. In this way the complexity of the search is reduced
from O(ns κ(n, s)) to O(sn κ(n, s)) where κ(n, s) is the cost of calculating the
worst-case error by formula (4). By inspection we find that κ(n, s) = O(sn)
and thus the total cost is O(s2n2). However, simply considering the product
as a cumulative product, since the previous components of z are fixed, reduces
the construction cost to O(sn2) at the expense of O(n) memory. This allows
for moderately larger values of s and n than for the exactness criteria, but
really large values are still infeasible unless more advanced arguments are used.
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In [DK04a, DK04b] Dick and Kuo conceive a modified method to find
lattice rules with “millions of points”, for which n needs to be a product of few
primes. But even without modifying the search it turns out to be possible to
construct lattice rules with millions of points and in thousands of dimensions.
This was first shown by the authors for n prime in [NC06a] and later extended
for any composite n [NC06b]. This fast algorithm allows for the construction
of lattice rules on a just in time basis.

The fast algorithm works by exploiting some structural properties in the
worst-case error formula. Starting from (4) it can be observed that the ω
function is evaluated on a multiplicative algebraic structure modulo n

ω

({
jz

n

})
= ω
(
j · z mod n

n

)
.

By rewriting (4) as a matrix-vector product it can be shown that a matrix-
vector multiplication with a matrix with the above structure can be done in
O(n logn) using fast Fourier transforms, see [NC06b]. Therefore, construction
takes only O(sn log(n)) using O(n) memory.

4 Toward Using Lattice Rules

Many texts start with saying that lattice rules are for integrating periodic
functions. The different quality criteria we mentioned before make that clear.
The traditional line of thought is that one first has to transform the region
to the unit cube and then periodize the function. Periodization is further
discussed in Section 4.1.

However, it is nowadays known that lattice rules can successfully be applied
to non-periodic functions as well, see, e.g., [SKJ02a, SKJ02b]. In Section 4.2 we
describe a recent trend in which lattice rules are even used as a sequence. Both
these new insights reduce the historical differences between low discrepancy
sequences and lattice rules.

4.1 Periodizing Transformations

A non-periodic function on the unit cube can be transformed by a periodizing
transform φ:∫

[0,1)s

f(x1, . . . , xs) dx =
∫

[0,1)s

f(φ(x1), . . . , φ(xs))φ′(x1) · · ·φ′(xs) dx.

Using a periodizing transformation is equivalent to using a transformed point
set, y(j) �→ (φ(y(j)1 ), . . . , φ(y(j)s )), with weights wj =

∏s
k=1 φ

′(y(j)k ) in (1).
There are several practical problems with periodization. Many periodizing

transformations exist. They are mainly used in one dimension and selecting
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the right transform for a given function is not trivial. It seems that the factor
(log(n))αs in the theoretical convergence, as mentioned in Section 2.2, is often
very well visible and this gets worse for higher s. Consequently more initial
points are needed to achieve the O(n−α).

The periodizing transformations lead to machine dependent cubature rules.
When n gets larger, calculations have to be done in higher precision. Indeed,
IEEE double precision is not enough since different points map to the same
floating point representation even for relatively small n; the floating point
cube [0, 1]s is not symmetric. Furthermore, when s gets higher the weights at
the boundaries get very small. Insiders know these problems already a long
time. In the recent paper [HR06] this is nicely analyzed.

It follows that periodization is only applicable in low dimensions and with
few points. But even then the transformation can give a transformed integrand
which is much harder to integrate than before, see [Hic02] for a theoretical
discussion and an alternative, and [HR06] for an example. Summarized, peri-
odization is a powerful tool in the hands of an expert but in the hands of the
unwary it is a dangerous tool!

4.2 Lattice Sequences

In practice one wants to have an error estimate for the approximation. The
traditional approach is to use multiple randomly shifted copies of one lattice
rule and then using the standard error of the multiple results as a stochastic
error estimate [CP76]. However, recent interest is in lattice sequences. These are,
not surprisingly, sequences of lattice rules, of which the points are embedded.
That is

Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λ� ⊂ · · · . (6)

In this way it becomes possible to obtain an error estimate, e.g., by using the
difference of two successive approximations.

Different schemes for this embedding exist. Joe and Sloan [JS92, SJ94]
introduced so-called copy rules for this purpose. This idea has been extended in
low dimensions to so-called augmented lattice sequences, see, e.g. [HR99, RH02].
A different approach is by using a number of points which is a power of a given
integer base. This was done by [HHLL01] and the theoretical existence of good
extensible lattice rules was given in [HN03]. Also in [CKN06] and [DPW] such
good lattice sequences were successfully constructed.

For such lattice sequences one uses the property that a lattice rule with
bm points consists of b smaller lattice rules with bm−1 points, which in turn
all consist of b smaller lattice rules with bm−2 points, and so on. By ordering
the points of the biggest lattice rule in a specific way, while keeping the
embedding (6) it is even possible to stop anywhere and still have a reasonable
good uniform distribution. This fixes one of the historical problems with lattice
rules: one can keep on adding points until the error estimate is sufficiently
small. An example in two dimensions is given in Figure 1.
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n = 27 = 33 n = 64 = 2 × 33 + 32 + 1 n = 81 = 34

Fig. 1. A lattice sequence in base 3. The first image shows a full lattice using
27 points. The next image shows an extension of this lattice to 64 points, since this
is not a power of 3, the resulting point set is not a full lattice. If we keep on adding
points we arrive at the last figure with 81 points, again a full lattice. For a good
lattice sequence the intermediate points are well distributed.

5 Lattice Rules in Action

In most recent papers on lattice rules, the emphasis is in high dimensions.
Let us point out that they are useful and indeed used also in low dimensions,
starting from two.

Several general purpose, black-box integration routines for 2-dimensional
integration are based on lattice rules. DITAMO [RdD81] is based on the
product rectangle rule in combination with the IMT periodizing transformation.
d2lri and r2d2lri [HR99, RH02] use augmented lattice rules combined with
a periodizing transformation. All these routines are based on sequences of
embedded rules and error estimators derived from these. A nice application
of 2-dimensional lattice rules is described in [Rev95]. Lattice rules also found
applications in the area of computer graphics, see, e.g., [Kel04, DKD08, DK08].

An example of lattice rules in action on a 5-dimensional example is presented
in [CN06]. There the result of a lattice rule of high trigonometric degree,
constructed along the lines described in Section 3.1, is compared to the result
of a lattice rule minimizing some worst-case error, constructed along the
lines described in Section 3.2 (and constructed to be a good lattice sequence
as described in Section 4). Good results were obtained without the use of
periodization and both rules were used as a sequence. Lattice rules and
sequences also find applications in much higher dimensions, see, e.g., [CKN06,
KDSWW] for examples in 100 and more dimensions.

During the conference several speakers presented results on lattice rules
in low and high dimensions. Some of these are included in this volume, e.g.,
[DKD08, DK08, SJ08].
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6 Final Remarks

The situation of construction methods for lattice rules can be summarized
as follows. Searches for lattice rules using the “classical” criteria are doomed
to fail for increasing dimensions, not only because the search space is too
big but also because the cost for evaluating these criteria is too high. The
component-by-component algorithm, relying on the worst-case error for a
reproducing kernel Hilbert space beats this curse of dimensionality. It allows
the construction of lattice rules very quickly even if n and s are large.

But work remains to be done. For the component-by-component construc-
tion, tuning of the function space using the weights must be done so that a
given problem belongs to (or is close to) the underlying reproducing kernel
Hilbert space. More experience with reliable, cheap and deterministic error
estimators for sequences, especially in high dimensions, would be interesting.
Currently the usage of a low number of randomizations seems to be the pre-
ferred method. We are not aware of any extensive tests for error estimation in
high dimensions.

Note that lattice rules are useful for low and high dimensions, and are not
only for integrating periodic functions. Furthermore different quality criteria
can be useful. Finally the difference between lattice rules and “classical” low
discrepancy sequences evaporates. Lattice rules with large n can be constructed
easily and can be used as low discrepancy sequences.

We would like to express our hope that some readers want to apply lattice
rules in practical problems. We hope that their experiences are positive and
that their reports find their way in the growing literature on lattice rules.

7 Tourist Information

It is beyond any doubt that the biggest monument in the world devoted to a
lattice is the Atomium4 in Brussels, Belgium. This monument was designed for
the Brussels World’s Fair that took place in 1958 (Expo ’58). The Atomium
consist of 9 balls symbolizing a unit cell of the body centered cubic lattice
crystal structure of iron magnified 165 × 109 times.
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